ISO 20391에 따른 세포 계수 프로세스 및 품질 평가

Hidetoshi Aoki^{*1} Masahiro Araki^{*2} Kei Hirotani^{*3} Tetsushi Namatame^{*1} Minako Mishima^{*1}

재생 의학 (regenerative medicine) 과 세포 치료에 사용되는 세포는 반드시 품질이 안정적이어야만 합니다. 그 상태를 파악하기 위해 세포 생산 과정에서 세포의 수가 계산됩니다. 그러나 표준계수 방법이 결정되어 있지 않기 때문에 측정 프로세스의 품질을 평가하기가 어려웠습니다. 그래서 ISO 20391-2 국제 표준이 개발되었습니다. 이 표준은 희석 분율 (dilution fraction) 실험 설계 및 세포 계수의 통계적 방법을 설명하고, 품질 지표를 사용하여 세포 계수 과정을 평가하는 방법을 보여줍니다.

Yokogawa의 CQ1 공초점 정량적 이미지 세포 측정기 (Confocal Quantitative Image Cytometer)는 형광 (fluorescence) 및 명시야 (bright-field) 이미지를 획득하고 이미지에서 세포의수를 셀 수 있습니다. 우리는 CQ1을 이용하여 TF-1 부유 세포 (suspension cells) 의 각 희석 분율에서 세포의수를 세고, ISO 20391-2에 따라 프로세스 품질을 평가하였습니다. 또한 CQ1의 성능을다른 회사의 장치와 비교한 결과 Yokogawa의 CQ1이 훨씬 더 정밀한 계수를 한다는 것을 발견했습니다. 본 글은 이러한 결과와, 생명 공학 분야에 대한 Yokogawa의 표준화 노력에 대해 설명합니다.

서문

동물 및 인간의 세포는 세포 구조 및 기능의 규명, 그리고 약물의 의학적 효과를 평가하는 등의 연구에 사용되어 왔습니다. 오늘날세포 제품은 재생 의학과 같은 의료 목적을 위해 제조됩니다.

이러한 세포 제품을 제조할 때 안정적인 품질이 매우 중요하기때문에, 배양 프로세스 중에, 또한 생산 완료 시 평가되는 다양한 품질 요소에 대해 제어 항목 (control items) 이 설정됩니다. 이러한 제어 항목 중에 세포의 수 (배양 배지 내 세포 농도) 가 가장 중요합니다. 세포 수는 일반적으로 배양 배지 (culture medium) 의 일부를 시료로 채취하고 그 안에 있는 세포를 세어 측정합니다. 구체적으로 보면 측정은 다음과 같은 단계로 구성되어 있습니다. (1) 배양 배지에서 시료 채취, (2) 희석된 시료 (diluted sample) 준비, (3) 희석된 시료를 혈구 계산기 (hemocytometer, 세포의 수를 세는 데 사용되는 슬라이드 글라스와 같은 크기의 장치)에 주입, (4) 세포 계수 (그림 1). 희석된 시료를 준비하는 절차에는 계량 오차 (weighing errors)가 포함되며, 이는 주로 작업자의 전문성과 설치 장비에 따라 달라집니다. 세포의 수는 자동화된 세포 계수기를 통해 세거나 작업자가 현미경 아래에서 육안으로 계수합니다. 두 경우 모두 계수된 수에는 측정 오차가에서 육안으로 계수합니다. 두 경우 모두 계수된 수에는 측정 오차가

포함됩니다. 또한 세포 계수의 세부 절차는 시설 또는 작업자에 따라다릅니다. 따라서 세포 계수의 정밀도 (precision) 를 정의할 필요가있으나, 세포 계수의 표준 방법이나 오차 평가 절차는 없습니다. 이것이 그동안 세포 제조에 있어서 프로세스 제어 및 품질 평가의 과제였습니다⁽¹⁾.

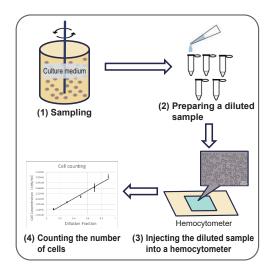


그림1 세포 계수의 주요 프로세스

^{*1} 마케팅 본부 산하 혁신 센터 생활 연구 개발부

^{*2} 생활 비즈니스 본부 산하 마케팅 센터 제품 전략부

^{*3} 마케팅 본부 산하 대외 업무 및 기술 마케팅 센터 기술 마케팅 1부

세포 관련 국제 표준화를 위한 YOKOGAWA의 노력

2013년, 국제 표준화 기구 (ISO) 는 생명 공학 분야의 국제 표준화를 위한 TC276 위원회를 구성했습니다⁽²⁾. 혁신 재생 의학 포럼 (Forum for Innovative Regenerative Medicine, FIRM) 은 2011년에 출범한 산업 단체로, 재생 의학의 구현을 위해 노력하고 있습니다. FIRM은 또한 일본의 TC276 심의 위원회이기도 합니다.

Yokogawa는 2013년 이래 FIRM의 회원이었으며, 생명 공학 분야의 표준화 활동에 참여하고 있습니다. Yokogawa는 또한 ISO/TC276 심의 위원회 회원으로서 ISO 20391-2 세포 계수에 대한 국제 표준을 마련하는 데 참여해오고 있습니다.

ISO 20391-2의 개요

ISO는 세포 계수에 관한 국제 표준을 검토한 후 2019년에 ISO 20391-2 "계수법 성능을 정량화하기 위한 실험 설계 및 통계 분석"을 발표했습니다⁽³⁾. 이를 통해 세포의 수를 계산하는 측정 방법을 평가할 수 있게 되었습니다. ISO 20391-2는 세포 계수 프로세스의 품질을 시각화하기 위한 비례 지수 (proportionality index, PI)를 설정합니다. PI를 계산하기 위한 여러 가지 절차가 표시되어, 세포 제조업체는 그 목적과 상황에 따라 적절한 절차를 선택할 수 있습니다. 두프로세스가 동일한 세포 종 (cell species), 실험 설계 및 PI 계산 절차를 공유하는 경우, 세포 계수 프로세스의 품질을 상호 비교할 수 있습니다.

CO1을 이용한 세포 계수 프로세스 평가

본 연구에서는 ISO 20391-2에 나타난 절차에 따라 TF-1 부유 세포 (인간 백혈병 세포주) 의 세포 계수 프로세스 품질을 평가하였습니다. TF-1 세포는 의약품의 활성 및 세포 성장 요인의 평가를 위해 사용됩니다. Yokogawa의 CQ1 공초점 정량적 이미지 세포 측정기 (Confocal Quantitative Image Cytometer) 가 희석 시료가 주입된혈구 계산기의 이미지를 얻는 데 사용되었으며, 이미지 내 세포 수가자동으로 계산되었습니다.

CQ1 공초점 정량적 이미지 세포 측정기

CQ1 공초점 정량적 이미지 세포 측정기는 공초점 스캐너 장치가 내장된 통합 현미경으로, 명시야 이미지 (bright field images) 와 위상 대조 이미지 (phase contrast images) 를 얻을 수 있을 뿐만 아니라, 살아있는 세포의 시간 경과 분석 및 세포 응집체의 3D 형광 이미장이 가능합니다. 이는 또한 마이크로플레이트 스태커 (microplate stackers) 를 이용한 높은 처리량 스크리닝과 오랜 시간 경과 분석을 위해 외부 인큐베이터에 연결된 시스템을 구축할 수도 있습니다. 게다가 CellPathfinder 분석 소프트웨어 및 라벨이 없는 분석 (label-free analyses) 을 이용하여 CQ1을 머신 러닝 및 딥 러닝과 결합함으로써다양한 정량적 분석이 가능합니다 (그림 2). 슬라이드 글라스 뿐만 아니라 멀티 웰 플레이트 (Multi-well plates) 도 측정 대상으로 허용됩니다. 이렇게 CQ1은 일반적으로 세포 평가를 위해 매우 다용도로 쓸수 있는 장비입니다. 본 연구에서 CQ1은 희석된 시료로 혈구 계산기의 오염되지 않은 이미지를 획득하고 그 이미지에 있는 세포의 수를 정량화하는 데 사용되었습니다.

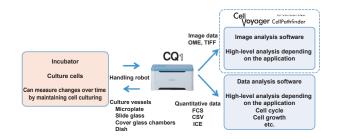


그림2 CQ1의 측정 대상 및 확장성 (expandability)

희석 시료의 준비 및 피펫팅 오차 (Pipetting Errors) 의 평가

TF-1의 배양 배지를 인산 완충 생리 식염수 (phosphate-buffered saline, PBS) 로 희석하여 다섯 가지 종류의 시료를 준비했습니다. 표 1은 각 시료의 배양 배지 및 PBS의 양을 보여줍니다. 모든 시료는 동일한 부피로 준비되었습니다. 이 절차를 반복하여 각 희석 비율에 대해 세 개의 시료 세트를 준비했습니다 (그림 3). 본 연구에서는 두 종류의 TF-1 배양액을 사용하여 서로 다른 세포 농도에서 세포 계수 프로세스를 평가했습니다. 세포 농도가 높은 배양 배지를 가진 시료를 stock H라고 하며, 다른 시료들을 stock L이라고 합니다.

표 1 희석 시료의 준비

희석 시료	1	2	3	4	5
희석 비율	0.9	0.7	0.5	0.3	0.1
TF-1 배양액					
(μl)	90	70	50	30	10
PBS (μl)	10	30	50	70	90
총계 (µl)	100	100	100	100	100

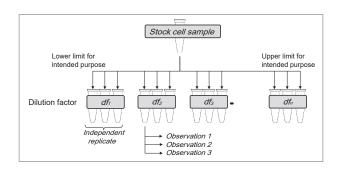


그림3 희석 시료 준비 이미지

위에서 준비된 각 시료의 중량을 측정하고 ISO 20391-2의 절차에 따라 피펫팅 오차를 평가했습니다. 계량 오차 (weighing errors) 의품질 판단에 대한 결정 계수 (coefficient of determination) 가 0.980이상으로 설정되었지만, stock H와 stock L의 시료 모두 이 기준 (0.998) 을 충족했습니다. 이에 따라 평가는 다음 단계로 넘어갔습니다.

세포 수의 측정

희석된 시료를 혈구 계산기 (C10228, ThermoFisher) 에 주입하고 CQ1을 사용하여 세포 이미지를 획득했습니다. 시료에 대해 세 가지의 측정을 수행하기 위해, 하나의 희석 시료에 대해 세 가지의 서로 다른 시야에서 세 개의 이미지를 획득했습니다. 획득된 세포 이미지를 2진화 하였으며 타원형 밝은 점의 수를 세포의 수로 계수하였습니다 (그림 4). 그런 다음, 희석된 시료 내의 세포 농도 (세포/ml) 를 시야 면적과 혈구 계산기의 깊이 (100μm) 에서 얻은 부피를 기준으로 계산하였습니다.

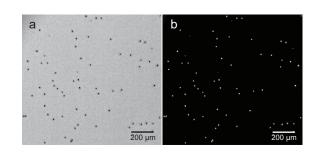


그림4 측정에 사용되는 오염되지 않은 세포 이미지의 예 (a: CQ1으로 획득한 이미지, b: 진화 후 이미지)

세포 계수 프로세스의 평가

(a) 결정 계수 (coefficient of determination, R²) 의 산출 계산된 세포 농도와 희석 비율 간 관계를 통해 회귀선을 구하고 결정 계수를 산출했습니다 (그림 5 및 그림 6). R2 값은 stock H를 사용한 경우 0.979, stock L을 사용한 경우 0.975였습니다 (표 3). 희석 비율과 측정된 세포 수 사이에 높은 상관관계가 나타났습니다.

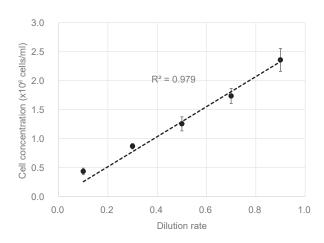


그림5 stock H에서 준비된 희석 시료의 희석 비율과 세포 농도 간 관계: CQ1으로 측정

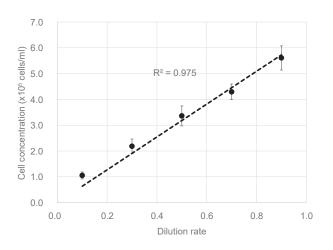


그림6 stock L에서 준비된 희석 시료의 희석 비율과 세포 농도 간 관계: CQ1으로 측정

(b) 비례 지수 (Proportionality Index, PI)

PI는 측정된 값이 회귀선에서 벗어나는 정도이며, 세포 계수 프로 세스의 품질을 나타냅니다. ISO 20391-2는 PI 산출을 위한 여러 가지 공식을 설명합니다. 본 연구에서는 각 데이터 평균과 회귀선의 차이 크기를 표현하기 위해 방정식 (1)을 사용했습니다. 표 2는 방정식에 사용된 약어를 설명합니다. 본 연구에 사용된 공식에서 PI 값이 작을수록 희석된 시료에 대한 측정 값이 회귀선으로부터 편차가 적음을, 즉 측정 프로세스의 품질이 높음을 의미합니다. 본 연구에서 세포 계수의 결과는 stock H와 stock L의 시료에대한 PI 값이 거의 동일하다는 것을 보여줍니다 (표 3).

$$PI = \sum_{i} \left| \frac{e_{i}^{\text{smoothed}}}{\lambda_{df_{i}}^{\text{proportional}}} \right| \qquad \cdot \cdot \cdot (1)$$

표 2 PI 산출에 사용된 약어 및 기호

약어 또는 기호	설명*	
PI	비례 지수	
i	목표 희석 분율 (target dilution fraction) 지수	
β_1	비례 모형 적합치에서 추정된 스칼라 계수	
dfi	목표 희석 분율	
\mathbb{R}^2	결정 계수 (Coefficient of determination)	
$e_i^{smoothed}$	비례성 분석에 목표 희석 분율을 사용할 경우 평활 잔차 (Smoothed residual)	
$\lambda_{df_i}^{proportional}$	비례 모형 적합 에서 구한 β 1을 사용한 dfi 에서의 추정 세포 수	

^{*} ISO 20391-2의 3.2조를 기반으로 편집함

표 3 CQ1을 사용한 세포 계수의 R² 및 PI

시료	Stock H(고 농도)	Stock L(저 농도)	
R^2	0.979	0.975	
PI	11.0	11.2	

타사의 장치를 이용한 세포 계수의 평가

세포 계수는 타사의 자동 세포 계수기 (타사의 장치) 를 이용하여 시행하기도 하였습니다. 이 장치들은 혈구 계산기의 이미지를 바탕으로 세포 수를 세고 세포 농도를 자동적으로 계산합니다. 사용된 희석 시료는 CQ1으로 측정할 때 사용된 시료와 동일했습니다. 측정은 각 희석 시료에 대해 3회 반복했으며, 그런 다음 R2 와 PI를 산출하였습니다. 방정식 (1)을 사용하여 PI를 산출했습니다. 그림 7은 stock L에서 준비된 희석 시료의 측정 결과를 보여줍니다 (stock H에서 준비된 희석 시료의 결과는 표시되지 않음). R² 와 PI는 표 4에 나타나 있습니다.

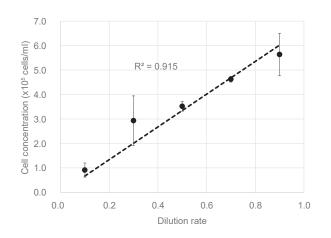


그림7 stock L에서 준비된 희석 시료의 희석 비율과 세포 농도 간 관계: 타사 장치로 측정

표 4 타사 장치를 사용한 세포 계수의 R² 및 PI

시료	Stock H(고 농도)	Stock L(저 농도)
R^2	0.980	0.915
PI	11.2	14.1

논의

다양한 세포 농도의 Stock을 사용한 세포 계수의 평가

세포 계수 프로세스에 CQ1을 사용하여 얻은 PI 값은 stock H와 stock L의 두 경우에 대해 거의 동일하였고, stock H와 stock L의 희석 시료에서 세포의 수는 각각 약 106개와 105개였습니다. 시료의 무게 측정으로 추정한 계량 오차는 stock H와 stock L의 경우 동일하게 작았습니다. 따라서, CQ1은 세포 수가 대략 105개 정도인 상대적으로 낮은 농도의 시료에서도 정밀한 측정을 가능하게 합니다.

CO1과 타사 장치에 의한 세포 계수 비교

세포 계수 프로세스는 CQ1과 타사 장치를 사용하여 동일한 세포 종, 실험 설계 및 동일한 PI 산출 공식으로 평가하였습니다. 이에 따라 두 측정값 사이의 정밀도를 비교할 수 있었습니다. Stock H의 시료를 사용했을 때, 두 가지 측정 프로세스의 PI 값은 모두 거의 동일했습니다. 그러나 stock L의 시료를 사용했을 때에는 CQ1으로 측정한 PI 값이 타사의 장치로 측정한 값에 비해 낮았습니다 (표 3 및 표 4). 측정에 사용된 희석 시료가 동일했기 때문에, 두 경우 모두 계량 오차 (weighing error) 는 동일했습니다. 따라서 PI 값의 차이가 각 장치의 측정 오차의 차이를 나타내는 것으로 간주되었습니다. 타사의 장치를 사용했을 때 몇 가지 희석 비율에서 데이터의 큰 분산이 나타 났으며, 측정 값의 평균이 회귀선으로부터 약 30% 정도 (가장 심한경우) 벗어났습니다 (그림 7). 이러한 결과는 측정 장치의 선택이 세포 계수 프로세스의 품질에 영향을 미친다는 것을 보여줍니다.

결론

본 글에서는 ISO 20391-2에 따라 세포 계수 프로세스를 평가하였고, CQ1이 타사의 장치에 비해 동등하거나 더 우수한 정밀도로 세포의 수를 측정할 수 있음을 보여주었습니다. 세포 제조를 위한 세포계수 프로세스를 구축함에 있어서, 프로세스에 허용되는 세포 품질 및 측정 시간을 고려하여 측정 장치를 선택하고, ISO 20391-2에 명시된 PI 등의 지표를 바탕으로 세포 계수 방법의 품질을 평가하는 것이 필수적입니다.

참고문헌

- ISO 20391-2: 2019, Biotechnology Cell counting Part 2: Experimental design and statistical analysis to quantify counting method performance, 2019
- (2) Motohiro Hirose and Yuzu Itou, "Guidelines for practical application of regenerative medicine and trends in international standards," Seibutsu-Kogaku Kaishi [Journal of Bioscience and Bioengineering], Vol. 96, No. 6, 2018, pp. 320-323 (in Japanese)
- (3) ISO 20391-1: 2018, Biotechnology Cell counting Part 1: General guidance on cell counting methods, 2018
- * CellVoyager is a registered trademark of Yokogawa Electric Corporation.
- * All other company names, group names, product names, and logos that appear in this paper are either trademarks or registered trademarks of Yokogawa Electric Corporation or their respective holders.